P P SAVANI UNIVERSITY

Second Semester of B. Tech. Examination November 2022

SESH1080 Linear Algebra & Calculus Time: 01:00 p.m. To 03:30 p.m.

22.11.2022, Tuesday

Instructions:

The question paper comprises of two sections.
Section I and II must be attempted compulsory.
Make suitable assumptions and draw neat figures wherever required.
Use of scientific calculator is allowed.

	SECTION - I			
	Answer the Following: (Attempt any Five)		CO	BTL
Q-1	Check the set of all 2×2 matrices of the form $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ with the standard matrix	[06]	1,	3/5
	addition and multiplication is vector space or not.		- /	-/-
Q - 2	Sets of vectors $(1,1,2,1)$, $(1,0,0,2)$, $(4,6,8,6)$, $(0,3,2,1)$ in \mathbb{R}^4 are linearly dependent?	[06]	1	4
Q-3	Determine the dimension and a basis for the solution space of the system	[06]	1	2/4
	$3x_1 + x_2 + x_3 + x_4 = 0$			-, -
	$5x_1 - x_2 + x_3 - x_4 = 0$			
Q-4	Apply the Gram-Schmidt process to transform the basis vectors $u_1=(1,1,1), u_2=(0,1,1), u_3=(0,0,1)$ into an orthogonal basis $\{v_1,v_2,v_3\}$, and then normalize the orthogonal basis vectors to obtain an orthonormal basis $\{q_1,q_2,q_3\}$.	[06]	1	6
Q-5	Find a QR -decomposition of $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$.	[06]	2	6
Q-6	Let $F: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear map defined by $F(x, y, z) = (3x + 2y - 4z, x - 5y + 3z)$. Find matrix of F in the following bases of \mathbb{R}^3 and \mathbb{R}^2 . $S =$	[06]	2	4/6
	$\{w_1, w_2, w_3\} = \{(1,1,1), (1,1,0), (1,0,0)\} \text{ and } S' = \{u_1, u_2\} = \{(1,3), (2,5)\}.$			
Q-7	Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the projection of a vector v into the xy-plane that	[06]	2	3/5
	is, $T(x, y, z) = (x, y, 0)$. Find kernel and range.			
Q-8	Find the least square solution of the linear system $Ax = b$ given by $x_1 + x_2 = 7$, $-x_1 + x_2 = 0$, $-x_1 + 2x_2 = -7$ and find the orthogonal projection of b on the column space of A .	[06]	2	3/5
	Answer the Following:			
Q-1	Find all the local maxima, local minima, and saddle points of the function $f(x) = x^2 + xy + y^2 + 3x - 3y + 4.$	[05]	3	5
	OR			
Q-1	Find all the local maxima, local minima, and saddle points of the function $f(x) = x^2 + xy + 3x + 2y + 5.$	[05]	3	5
Q-2	Find $\frac{\partial w}{\partial v}$ when $u=0, v=0$ if $w=x^2+\left(\frac{y}{x}\right), x=u-2v+1, y=2u+v-2$.	[05]	3	4
Q-3	Trace the hypocycloid $x = a \cos^3 t$, $y = b \sin^3 t$.	[10]	4	6
0.2	OR OR			
Q-3	Trace the cardioid $r = a(1 - \cos \theta)$.	[10]	4	6

Maximum Marks: 60

Q-4 Write Legendre's duplication formula and evaluate $\Gamma\left(\frac{5}{2}\right)$. [05] 4 1/5 Q-5 (1) $\Gamma 1 =$ (2) $\Gamma 0 =$ [05] 4 1/2 (3) $\Gamma(1/2) =$ (4) $\Gamma 2 =$ [05] 4 1/2 (5) Symmetrical property of B(m,n) is _____ Q-6 Prove that n B(m+1,n) = m B(m,n+1) [05] 4 5

CO : Course Outcome Number

BTL : Blooms Taxonomy Level

Level of Bloom's Revised Taxonomy in Assessment

1: Remember	2: Understand	3: Apply	
4: Analyze	5: Evaluate	6: Create	